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We analytically study entanglement generation through an open quantum-dot system described by the
two-lead Anderson model. We exactly obtain the transition rate between the nonentangled incident state in one
lead and the outgoing spin-singlet state in the other lead. We find that only the spin-singlet state can transmit
in the cotunneling process. To discuss such an entanglement property in the open quantum system, we con-
struct the exact two-electron scattering state of the Anderson model. It is striking that the scattering state
contains spin-singlet bound states induced by the Coulomb interaction. The bound state describes a scattering
process in which the set of momenta is not conserved and hence, it is not in the form of a Bethe eigenstate.

DOI: 10.1103/PhysRevB.80.245323 PACS number�s�: 03.67.Bg, 03.65.Nk, 05.60.Gg, 73.63.Kv

I. INTRODUCTION

We present an exact approach to electron entanglement
generation in an open quantum system. Entanglement has
attracted much attention in wide range of physics; it is a
resource for quantum information processing and provides
insight into quantum phase transitions in statistical
physics.1,2 In most studies, the entanglement properties are
discussed in closed systems in equilibrium. In order to study
manipulation of entanglement, however, we need to consider
an open system out of equilibrium. Entanglement generation
using electrons in mesoscopic structures has been proposed
recently.3–8 In Refs. 3, 4, and 8, in particular, devices are
connected to reservoirs, electrons enter the device from the
reservoirs, and interactions �the Coulomb interaction as well
as the interaction between electron spin and nuclear spin� are
essential for the entanglement generation. It is our purpose to
discuss the entanglement generation in such an open system
through an exact solution of scattering theory.

In this paper, we obtain an exact result for entanglement
property of transported electrons of the two-lead Anderson
model. The Anderson model is a fundamental model describ-
ing the electron transport through a quantum dot as illus-
trated in Fig. 1�a�. It consists of a quantum dot with a single
spin-degenerate level and two leads of noninteracting elec-
trons each of which lead is coupled to the dot. There are four
configurations in the quantum dot, i.e., empty, single occu-
pation with an up spin or a down spin and double occupation
with opposite spins. Among them, two electrons in the
double occupation interact with each other �the Hubbard in-
teraction�. In order to describe an open system, we consider
the single level with infinitely long leads rather than treating
a quantum dot connected to large electron reservoirs. In this
system, the electrons that enter from one lead are scattered
by the quantum dot and are divided into the reflected wave
on the same lead and the transmitted wave on the other lead.
These scattered waves never come back to the dot again. The
Landauer formula9 tells us that this property captures a char-
acteristics of a system with electron reservoirs.

We calculate the transition rate from the nonentangled
two-electron incident state with momenta k1 and k2 on the
lead 1 to the singlet and triplet states with momenta q1 and q2

on the lead 2. In the scattering process that conserves the set
of momenta as in Fig. 1�b�, both the triplet and the singlet
components of the incident state can be transmitted to the
lead 2. On the other hand, in the scattering process which
conserves the total energy but not the set of momenta as in
Fig. 1�c�, we will find that only the singlet component can be
transmitted and the triplet component is filtered out. The pro-
cess in Fig. 1�c� represents that both two electrons with mo-
menta k1 and k2 occupy the quantum dot during the same
period, change their momenta to q1 and q2 due to the Cou-
lomb interaction, and come out into the lead 2. In this paper,
we call such a process a cotunneling process. �The term “co-
tunneling process” is often used for a tunneling process of a
single electron in a specific order of perturbation theory.
Here, we are using the term for a tunneling process of two
electrons up to infinite order of the interaction parameter U.�
We will clarify this mechanism by calculating the transition
rates exactly, which is the main achievement of our ap-
proach. The mechanism of the entanglement generation was
first proposed in Ref. 3; the lowest order of our result repro-
duces their perturbative result. Recently, a similar mecha-
nism of entanglement generation is proposed in a side-
coupled quantum dot10 and an interaction-induced orbital
entanglement property has been also discussed in a quantum-
dot system.11

For the above purpose, we obtain the exact solution of the
two-electron scattering state. A remarkable point of the state
is that it contains a two-body singlet bound state. The bound

Non-entangled

Singlet Lead 2

U

t t
quantum dot

Lead 2

k1
q
2

k2
q
1

Momentum

k1

q
2

k2

q
1

(a)

(c)

(b)
Lead 1

Lead 1

Singlet
only

0

x

inc
ide
nc
e

reflection

tra
ns
mi
ss
io
n

FIG. 1. �a� A schematic diagram of the Anderson model. �b� A
scattering process that conserves the set of momenta. �c� A cotun-
neling process.
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state is induced in the cotunneling process �Fig. 1�c�� by the
Hubbard interaction on the quantum dot. A many-body
eigenstate of the closed Anderson model can be constructed
by the Bethe ansatz.12–15 In contrast, our exact scattering
state is a many-body eigenstate of the open Anderson model
and essentially different from the Bethe eigenstate. A similar
bound state is also discussed in Ref. 16, where the two-
electron scattering matrix has been constructed exactly in the
Anderson model. While their study is focused on the
asymptotic states of electrons that lie far from the quantum
dot, our exact solution describes electron states both inside
and around the quantum dot.

The paper is organized as follows. In Sec. II, we give the
definition of the two-lead Anderson model and present our
main result. In order to obtain the result, we need to obtain
the two-electron scattering state. The exact construction of
this state is given in Sec. III. Concluding remarks are given
in Sec. IV.

II. MODEL AND RESULT

A. Two-lead Anderson model

The Hamiltonian of the Anderson model is defined as H
=H0+H1, where

H0 = �
k

�
�=↑,↓

�
�=1,2

��k�c�k�
† c�k� + �

�=↑,↓
�dnd� + Und↑nd↓,

�1�

H1 =
t

�2
�

k
�

�=↑,↓
�

�=1,2
�c�k�

† d� + d�
†c�k�� . �2�

Here, c�k�
† �c�k�� denotes the creation �annihilation� operator

of an electron with momentum k and spin ��=↑ ,↓� on the
lead ��=1,2�. Each lead is represented as a noninteracting
Fermionic chain with the dispersion relation ��k�. The opera-
tor d�

† �d�� represents the creation �annihilation� operator of
an electron on the quantum dot and nd�=d�

†d�. We consider a
single spin-degenerate level on the dot. When the energy
level of the quantum dot is occupied by two electrons with
opposite spins, they feel the Coulomb repulsion energy U
�0. Thus, two effective energy levels on the dot are given
by �d and �d+U. Depending on whether the levels are occu-
pied by the electrons, there are four possible configurations;
the empty state with total energy 0, a single occupation by an
electron with either spin ��=↑ ,↓� with total energy �d, and
the double occupation with total energy 2�d+U. The param-
eter t represents the coupling between each lead and the dot.

In this paper, we consider the model where the lead en-
ergy ��k� is linearized in the vicinity of the Fermi energy to
be ��k�=�F+vF�k−kF�.13–15 This assumption is valid when
the other parameters t, �d, and U are small compared with the
Fermi energy. Hereafter, we set vF=1, kF=0 and �F=0 for
simplicity without loss of generality. Under the assumption,
the Hamiltonian above is transformed to the following model
with continuous leads:

H0 = �
�=↑,↓

�
�=1,2

�
−�

�

dxc��
† �x�

1

i

d

dx
c���x� + �

�=↑,↓
�dnd�

+ Und↑nd↓, �3�

H1 =
t

�2
�

�=↑,↓
�

�=1,2
�c��

† �0�d� + d�
†c���0�� . �4�

Here, the relation between the coordinate representation and
the momentum representation is given by

c�k�
† =

1
�2�

� dxeikxc��
† �x�, c�k� =

1
�2�

� dxe−ikxc���x� .

�5�

Note that there are only right-moving electrons on the
leads since we have set vF=1 in the linearized dispersion
relation. Even in this situation, we can take both reflection
and transmission modes into account; when we regard the
region x�0 on the lead 1 as the incident mode, the regions
x�0 on the lead 1 and 2 can be interpreted as the reflection
and the transmission modes, respectively �see Fig. 1�a��. This
“unfolded” picture was also explained in Ref. 17.

In the model described by Eqs. �3� and �4�, we consider
the situation studied in Ref. 3. Let �k1 ,k2 ;1	 be the nonen-
tangled incident state with momenta k1 and k2 on the lead 1
defined by

�k1,k2;1	�i� = c1k1↑
† c1k2↓

† �0	 , �6�

where �0	 denotes the vacuum state. We also define a triplet
state �q1 ,q2 ;2 ,+	�f� and a singlet state �q1 ,q2 ;2 ,−	�f� with
momenta q1 and q2 on the lead 2,

�q1,q2;2, �	�f� =
1
�2

�c2q1↑
† c2q2↓

† � c2q1↓
† c2q2↑

† ��0	 , �7�

which are used as outgoing states. Our purpose is to calculate
the transition amplitude between these states,

�f�
q1,q2;2, ��T�Ek��k1,k2;1	�i���Ek − Eq� , �8�

where Ek=k1+k2, Eq=q1+q2 and T�E� represents the transi-
tion matrix defined by the recursion relation

T�E� = H1 + H1
1

E − H0 + i0
T�E� . �9�

The definition is originated from the Lippmann-Schwinger
equation, Eq. �15�, which will be described in Sec. III A.

B. Main result

We will obtain new exact results for the transition ampli-
tudes

�f�
q1,q2;2,+ �T�Ek��k1,k2;1	�i���Ek − Eq�

=
t2ek1

ek2

4�2i
���k1 − q1���k2 − q2� − ��k1 − q2���k2 − q1�� ,

�10�
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�f�
q1,q2;2,− �T�Ek��k1,k2;1	�i���Ek − Eq�

=
t2ek1

ek2

4�2i
���k1 − q1���k2 − q2� + ��k1 − q2���k2 − q1��

+
U

2�2

Ek − 2�d + it2

Ek − 2�d − U + it2ek1
ek2

eq1
eq2

��Ek − Eq� , �11�

where ek is defined in Eq. �25� below. Equation �10� and the
first term in Eq. �11� represent the contributions from the
scattering process which conserves the set of momenta
�k1 ,k2�= �q1 ,q2� as shown in Fig. 1�b�. Note that they vanish
if ki and qj satisfy the condition of the cotunneling process
�Fig. 1�c��,

Ek = Eq, �k1,k2� � �q1,q2� . �12�

In contrast, Eq. �11� has an additional term, which remains
nonzero for U�0 under the condition �12�. The contribution
appears only in the transition into the singlet state �Eq.
�11��, not in the transition into the triplet state �Eq. �10��.
In other words, we will observe only singlet states if we
wait for outgoing electrons on the lead 2 under the condition
�12�.

Figure 2 shows the dependence of the transition rate
2���f�
q1 ,q2 ;2 ,−�T�Ek��k1 ,k2 ;1	�i��2 on the interaction energy
U for t�Ek �Fig. 2�a�� and t�Ek �Fig. 2�b��. The solid lines
indicate our exact result and the dashed lines represent the
perturbative result in the lowest order of t,

�f�
q1,q2;2,+ �T�Ek��k1,k2;1	�i���Ek − Eq� =
t4

8�2�i�k1 − �d��k2 − �d�
���k1 − q1���k2 − q2� − ��k1 − q2���k2 − q1�� + O�t6� ,

�13�

�f�
q1,q2;2,− �T�Ek��k1,k2;1	�i���Ek − Eq� =
t4

8�2�i�k1 − �d��k2 − �d�
���k1 − q1���k2 − q2� + ��k1 − q2���k2 − q1��

+
U�Ek − 2�d�

8�2�2�Ek − 2�d − U��k1 − �d��k2 − �d��q1 − �d��q2 − �d�
��Ek − Eq� + O�t6�

�14�

which was obtained in Ref. 3. The perturbative one, being
divergent, fails when UEk even for t�Ek.

III. ONE- AND TWO-ELECTRON SCATTERING STATES

A. Lippmann-Schwinger equation

We consider the scattering state �		 given by the solution
of the Lippmann-Schwinger equation,

�		 = �		�i� +
1

E − H0 + i0
H1�		 , �15�

where �		�i� denotes an incident state which satisfies
H0�		�i�=E�		�i�. The definition �9� of the transition matrix
T�E� is originated from the relation T�E��		�i�=H1�		 with
the solution �		. We are particularly interested in the two-
electron scattering state �k1 ,k2 ;1	, which is the solution of
Eq. �15� with �		�i�= �k1 ,k2 ;1	�i� given by Eq. �6� and E=Ek
=k1+k2. The transition amplitude �8� is then expressed in the
form

�f�
q1,q2;2, ��T�Ek��k1,k2;1	�i� = �f�
q1,q2;2, ��H1�k1,k2;1	 .

�16�

In this section, we will construct the exact solution of the
state �k1 ,k2 ;1	. We start our discussion by introducing the
even-odd transformation, which turns the two-lead Anderson

model into a simpler form. In Ref. 18, we applied the same
technique to a spinless model and obtained the exact solution
of many-electron scattering states.

The even-odd transformation is defined by

ce��x� =
1
�2

�c1��x� + c2��x�� ,

co��x� =
1
�2

�c1��x� − c2��x�� . �17�

Applying this transformation to the two-lead Anderson
model �3� and �4�, we decompose the Hamiltonian into H
=He+Ho, where

He = �
�=↑,↓

�� dxce�
† �x�

1

i

d

dx
ce��x� + �dnd�� + Und↑nd↓

+ �
�=↑,↓

t�ce�
† �0�d� + d�

†ce��0�� , �18�

Ho = �
�=↑,↓

� dxco�
† �x�

1

i

d

dx
co��x� . �19�

Note that the odd part Ho is completely decoupled from the
even part He. Thus, the two-lead Anderson model �3� and �4�
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can be transformed to the one-lead Anderson model �18�
with the free part �19�.

Through the even-odd transformation, the scattering state
�k1 ,k2 ;1	 is expressed as18

�k1,k2;1	 =
1

2
��k1,k2	ee + �k1,k2	eo + �k1,k2	oe + �k1,k2	oo� ,

�20�

where �k1 ,k2	
� ��
 ,��= �e ,e� , �e ,o� , �o ,e� , �o ,o�� denotes
the solution of the Lippmann-Schwinger equation �15� with
the incident state �		�i�= �k1 ,k2	
�

�i�
ªc
k1↑

† c�k2↓
† �0	. We note

that H0�k1 ,k2	
�
�i� =Ek�k1 ,k2	
�

�i� .

B. One-electron scattering states

Before giving these two-electron scattering eigenstates,
we first consider the tutorial case of the one-electron eigen-
state �k� ;1	 ��= ↑ ,↓�, which is the solution of Eq. �15� with
�		�i�=c1k�

† �0	 and E=k. After the even-odd transformation
�17�, the scattering state is written as

�k�;1	 =
1
�2

��k�	e + �k�	o� , �21�

where �k�	
 �
=e ,o and �= ↑ ,↓� is the one-electron scatter-
ing state �15� with �		�i�=c
k�

† �0	. The one-electron eigen-
states can be expressed as follows:

�k�	e = �� dxgk�x�ce�
† �x� + ekd�

†��0	 , �22�

�k�	o =� dxhk�x�co�
† �x��0	 , �23�

where the eigenfunctions are given by

gk�x� =
1

�2�
eikx���− x� + ��x�ei�k� , �24�

ek =
1

�2�

t

k − �d + it2/2
, hk�x� =

1
�2�

eikx. �25�

Here, ��x� is the step function with ��0�=1 /2 and ei�k

ªek /ek
� in Eq. �24� represents the phase factor due to the

scattering at the dot.
The derivation of these eigenfunctions is as follows. For

the odd part, we can easily find that hk�x� in Eq. �23� is the
plane wave presented in Eq. �25� since the Hamiltonian �19�
is completely free. For the even part, the Schrödinger equa-
tion He�k�	e=k�k�	e reads

1

i
��x − k�gk�x� + t��x�ek = 0, �26�

��d − k�ek + tgk�0� = 0. �27�

In the case x�0, the function gk�x� is just a plane wave. Due
to the �-function term in Eq. �26�, gk�x� is discontinuous at
x=0. Since the value gk�0� is not determined by the
Schrödinger equations, we assume

gk�0� =
1

2
�gk�0−� + gk�0+�� . �28�

The discontinuity of gk�x� is characterized by the following
matching condition:

gk�0+� − gk�0−� = − itek, �29�

which is obtained by integrating Eq. �26� from −� to � and
taking the limit �→0. From Eqs. �27� and �29� with Eq. �28�,
we find

ek =
t

k − �d + it2/2
gk�0−�, gk�0+� = ei�kgk�0−� . �30�

Thus, we obtain the eigenfunctions �24� and �25�. The con-
stant factor gk�0−� is determined to be 1 /�2� by the normal-
ization condition e
k� �k���	e=��k−k������.

C. Two-electron scattering states

Next, extending the calculation for the one-electron scat-
tering state, we consider the two-electron scattering states
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FIG. 2. The transition rate 2���f�
q1 ,q2 ;2 ,−�T�Ek��k1 ,k2 ;1	�i��2
obtained from our exact solution �solid line� and a perturbative one
�dashed line� for �d=0, k1=k2=0.1, q1=0.05, q2=0.15, Ek=Eq

=0.2 with �a� t=0.1��Ek� and �b� t=0.3��Ek�.
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�k1 ,k2	
� ��
 ,��= �e ,e� , �e ,o� , �o ,e� , �o ,o��. These can be
written in the forms

�k1,k2	ee = �� dx1dx2gee�x1,x2�ce↑
† �x1�ce↓

† �x2�

+� dxe↑ee�x�ce↓
† �x�d↑

† +� dxe↓ee�x�ce↑
† �x�d↓

†

+ feed↑
†d↓

†��0	 , �31�

�k1,k2	eo = �� dx1dx2geo�x1,x2�ce↑
† �x1�co↓

† �x2�

+� dxe↑eo�x�co↓
† �x�d↑

†��0	 , �32�

�k1,k2	oe = �� dx1dx2goe�x1,x2�co↑
† �x1�ce↓

† �x2�

+� dxe↓oe�x�co↑
† �x�d↓

†��0	 , �33�

�k1,k2	oo =� dx1dx2goo�x1,x2�co↑
† �x1�co↓

† �x2��0	 . �34�

For the cases except 
=�=e, the scattering states are free of
the Coulomb interaction U because the even and odd Hamil-
tonians �18� and �19� are completely decoupled. Thus, the
eigenfunctions are given by the products of the one-electron
eigenfunctions �24� and �25� as

geo�x1,x2� = gk1
�x1�hk2

�x2�, e↑eo�x� = − ek1
hk2

�x� ,

goe�x1,x2� = hk1
�x1�gk2

�x2�, e↓oe�x� = ek2
hk1

�x� ,

goo�x1,x2� = hk1
�x1�hk2

�x2� . �35�

Let us now consider the case 
=�=e. Only in this case,
the eigenfunctions depend on the interaction U. These are
given as follows:

gee�x1,x2� = gk1
�x1�gk2

�x2� + eiEkx2��x1�Z�x1 − x2�

+ eiEkx1��x2�Z�x2 − x1� , �36�

e↑ee�x� = − ek1
gk2

�x� −
i

t
eiEkxZ�− x� , �37�

e↓ee�x� = ek2
gk1

�x� +
i

t
eiEkxZ�− x� , �38�

fee = ek1
ek2

−
2

t2Z�0� , �39�

where Ek=k1+k2 and

Z�x� =
− t2Uek1

ek2

Ek − 2�d − U + it2ei��d−it2/2�x��− x� . �40�

In Eqs. �36�–�39�, the function Z�x� describes an effect of the
interaction. The derivation of these results will be given in
the next subsection.

From Eqs. �16�, �20�, and �31�–�34�, we find that the tran-
sition amplitude �8� is expressed as

�f�
q1,q2;2, ��T�Ek��k1,k2;1	�i���Ek − Eq�

=
t

8��
� dx�hq2

� �x�  hq1

� �x����e↑eo�x� − e↑ee�x�� � �e↓oe�x�

− e↓ee�x�����Ek − Eq� �41�

where hk�x� is defined by Eq. �25�. Thus, substituting the
results on e�
��x� in Eqs. �35�, �37�, and �38� into this equa-
tion, we obtain the exact transition amplitudes �10� and �11�.

Remarkable is that Eqs. �36�–�38� contain the term Z�x�,
Eq. �40�, which represents a two-body bound state. The range
of binding is t−2, which itself is independent of U. Note the
following properties:

�i� the bound state is induced by the Coulomb interaction
U; it vanishes for U=0. It describes the process where both
electrons with opposite spins are on the dot. In order for the
two electrons to interact, in a short period during which the
first electron stays on the dot, the second electron has to
come into the dot. Therefore, we can expect that the longer
the distance between the two electrons is, the smaller the
probability of observing such a process. The exponential de-
cay in the bound state represents this situation.

�ii� The bound state appears in the cotunneling process
�12�, which is a scattering process that does not conserve the
momentum set. In contrast, the first term of Eq. �36� repre-
sents the direct �k1=q1 ,k2=q2� and exchange �k1=q2 ,k2
=q1� processes.

�iii� The bound state appears only in the case 
=�=e
since the term d↑

†d↓
†�0	 does not exist in the other cases and

thereby the eigenfunctions do not depend on U.
From these properties, we find that it is this bound state

that produces the second term of the transition rate to the
singlet state in Eq. �11�.

These scattering states �35�–�40� are important for the
study of transport properties in the open quantum system. In
a closed system with a periodic boundary condition, the ex-
act eigenfunctions in the Anderson model were obtained by
the Bethe ansatz.12–15 Our results �36�–�40� are essentially
different from the Bethe eigenstates. In the Bethe ansatz,
gee�x1 ,x2� would be in the following form:

gee�x1,x2� = �
Q

AQgk1
�xQ1

�gk2
�xQ2

� . �42�

Here, Q= �1,2� , �2,1� and AQ depends on ki and the param-
eters of the model, i.e., �d, t and U. Note that the solution is
characterized by the fixed set �k1 ,k2�. Although ki could be a
complex number, it is obvious that Eq. �42� cannot describe
the form of Eq. �36�.
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D. Proof of Eqs. (36)–(40)

We now present the derivation of the two-electron wave
functions �36�–�40�. The scattering eigenstate �k1 ,k2	ee is ob-
tained by solving the two-electron Schrödinger equation
He�k1 ,k2	ee=Ek�k1 ,k2	ee, which reads

�1

i
��1 + �2� − Ek�gee�x1,x2� + t���x2�e↓ee�x1� − ��x1�e↑ee�x2��

= 0, �43�

�1

i
�x + �d − Ek�e↑ee�x� − tgee�0,x� − t��x�fee = 0, �44�

�1

i
�x + �d − Ek�e↓ee�x� + tgee�x,0� + t��x�fee = 0, �45�

�Ek − 2�d − U�fee − t�e↓ee�0� − e↑ee�0�� = 0, �46�

where Ek=k1+k2. As in Eq. �28�, we set

gee�0,x� =
1

2
�gee�0 − ,x� + gee�0 + ,x�� , �47�

gee�x,0� =
1

2
�gee�x,0−� + gee�x,0+�� , �48�

e�ee�0� =
1

2
�e�ee�0−� + e�ee�0+�� �49�

for �= ↑ ,↓. The boundary condition is

gee�x1,x2� =
1

2�
ei�k1x1+k2x2�, �50�

for x1, x2�0. It is obvious that the eigenfunction �36� satis-
fies this condition. Note that the condition corresponds to the
plane-wave incident state �k1 ,k2	ee

�i�=cek1↑
† cek2↓

† �0	. Indeed, we
can directly confirm that our solution �36�–�40� of the
Schrödinger equations �43�–�46� satisfies the Lippmann-
Schwinger equation �15� with �		�i�= �k1 ,k2	ee

�i�.
We rewrite the set of the equations in more convenient

forms, that is, matching conditions and the differential equa-
tions without the �-function terms. Integrating each variable
of Eqs. �43�–�46� from −� to � and taking �→0, we obtain
the following matching conditions, which describe the dis-
continuities of the eigenfunctions:

gee�0 + ,x� − gee�0 − ,x� = ite↑ee�x� , �51�

gee�x,0+� − gee�x,0−� = − ite↓ee�x� , �52�

e↑ee�0+� − e↑ee�0−� = itfee, �53�

e↓ee�0+� − e↓ee�0−� = − itfee. �54�

Then, through the conditions, the Schrödinger equations for
x1�0, x2�0, and x�0 are written as

��1 + �2�gee�x1,x2� = iEkgee�x1,x2� , �55�

�xe↑ee�x� = i�Ek − �d +
it2

2
�e↑ee�x� + itgee�0 − ,x� , �56�

�xe↓ee�x� = i�Ek − �d +
it2

2
�e↓ee�x� − itgee�x,0−� , �57�

�Ek − 2�d − U + it2�fee = t�e↓ee�0−� − e↑ee�0−�� . �58�

Since Eqs. �56� and �57� are first-order differential equations,
we can readily integrate them. We have

e↑ee�x� = Bre
i�Ek−�d+it2/2�x

+ itei�Ek−�d+it2/2�x�
cr

x

dye−i�Ek−�d+it2/2�ygee�0 − ,y� ,

�59�

e↓ee�x� = Cre
i�Ek−�d+it2/2�x

− itei�Ek−�d+it2/2�x�
cr

x

dye−i�Ek−�d+it2/2�ygee�y,0−� ,

�60�

where cI=−� and cII=0. The constants Br and Cr are con-
stants of integration, which may be different in the regions
r=I�x�0� and II�x�0�.

In the following, we use Eqs. �51�, �52�, �55�, and �58�–
�60� in place of the original Schrödinger equations �43�–�46�.
Starting from Eq. �50�, we construct the eigenfunctions in the
order described in the flow chart Fig. 3.

gee

gee gee

(x1 ,x2 <0)

(x1 <0<x2) (x2 <0<x1)
fee

gee gee
(0<x1<x2)(0<x2<x1)

(x<0) (x<0)

(x>0) (x>0)

Step 1

Step 2

Step 3

Step 4

(59) (60)

(52)
(55)

(59) (60)

(51)

(51)

(55)

(52)
(55) (55)

e�ee e�ee

e�ee e�ee

(58)

FIG. 3. Flow chart for constructing the two-electron scattering
state �k1 ,k2	ee. Our starting point �50� is represented on the top.
Near each arrow, we describe the number�s� of equation�s� that we
use to obtain respective target.
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1. Step 1

We find BI=CI=0, or the first terms in Eqs. �59� and �60�,
would be divergent as x→−�. Thus, from Eq. �59� with Eq.
�50�, we have

e↑ee�x� = −
ek1

�2�
eik2x for x � 0. �61�

Here, ek is given by Eq. �25�. Similarly from Eq. �60� with
Eq. �50�, we have

e↓ee�x� =
ek2

�2�
eik1x for x � 0. �62�

2. Step 2

From the matching condition �51� with Eqs. �50� and �61�,
we find

gee�0 + ,x� =
1

2�
ei�k2x+�k1

� for x � 0, �63�

where ei�k represents the phase factor appearing in the one-
electron scattering state �24�. Dependence of the eigenfunc-
tion on the first variable can be recovered from Eq. �55�,

gee�x1,x2� =
1

2�
ei�k1x1+k2x2+�k1

� for x2 � 0 � x1. �64�

Similarly, using the matching condition �52� with Eqs. �50�
and �62�, we find

gee�x1,x2� =
1

2�
ei�k1x1+k2x2+�k2

� for x1 � 0 � x2. �65�

Furthermore, substituting Eqs. �61� and �62� into Eq. �58�,
we obtain the result for fee, Eq. �39�.

3. Step 3

From Eqs. �59� with Eq. �65�, we have

e↑ee�x� = B̃IIe
i�Ek−�d+it2/2�x −

ek1

�2�
ei�k2x+�k2

� for x � 0,

�66�

where B̃II=BII+ek1
ei�k2 /�2�. Note that the first term in this

equation does not appear in Eq. �61�. This term produces the
function Z�−x�, Eq. �40�. The coefficient is determined by the
matching condition �53� with Eqs. �39� and �61�,

B̃II =
itUek1

ek2

Ek − 2�d − U + it2 . �67�

Similarly, we obtain

e↓ee�x� =
− itUek1

ek2

Ek − 2�d − U + it2ei�Ek−�d+it2/2�x +
ek2

�2�
ei�k1x+�k1

�

for x � 0. �68�

4. Step 4

Following the same procedure as Step 2 with the results
�66�–�68�, we have

gee�x1,x2� = −
t2U

Ek − 2�d − U + it2ei�Ekx2−��d−it2/2��x2−x1��

+
1

2�
ei�k1x1+k2x2+�k1

+�k2
� �69�

for 0�x1�x2 and

gee�x1,x2� = −
t2U

Ek − 2�d − U + it2ei�Ekx1−��d−it2/2��x1−x2��

+
1

2�
ei�k1x1+k2x2+�k1

+�k2
� �70�

for 0�x2�x1.
Summarizing the results obtained by these steps, we ar-

rive at the desired expressions �36�–�39�.

IV. CONCLUDING REMARKS

In this paper, we have constructed the exact two-electron
scattering state and discussed its entanglement property. For
the exact calculation of the transition rates �10� and �11�, our
solution is essential. We have clarified that the electron trans-
port through the quantum dot has a potential advantage for
entanglement generation.

One of the interesting problems in the future is how this
two-particle entanglement can be extracted from the current
through mesoscopic devices. In an open quantum dot system,
the transport property depends on the temperature of the
system.19 When the temperature is higher than the Kondo
temperature TK, the sequential tunneling for electrons due to
the Coulomb blockade becomes dominant. In this regime,
coherence between electrons vanishes. In contrast, when the
temperature is sufficiently low compared with TK, the Kondo
effect becomes prominent. Since the Kondo state is a singlet
state of electrons in and out of the dot, this low-temperature
regime can be advantageous for extraction of the entangle-
ment discussed in this paper.

Our exact scattering state may also be a tool for under-
standing nonequilibrium electron transport of mesoscopic
devices under a finite bias voltage. In a spinless model, the
analytic approach for this topic has been proposed20–23 and
the importance of many-electron scattering states on the non-
equilibrium current has been pointed out recently.18,24,25 In
particular, our approach in Ref. 18 succeeded in obtaining
nonperturbative result on nonlinear current-voltage charac-
teristics. Furthermore, for the Anderson model, nonequilib-
rium transport properties has been vigorously studied by
perturbative26,27 and numerical28–30 approaches. We believe
that our exact many-electron scattering state clarifies nonper-
turbative aspect of the Kondo effect out of equilibrium.31–33
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